“我花了一分钟将我的九年义务教育重温了一遍……终于发现自己被骗!
这题人能做?
楼上出题的那个‘雨花石’,麻烦用‘术语’解释一下!”
“这么直接做题当然人不行,所以我们还需要引入其他数据。
比如小猫喜欢你,有b%可能和你贴贴,有c%概率发出呼噜声。
所以我们如何知道小猫有多大概率喜欢自己呢,通过贝叶斯定理就可以从翻肚皮,贴贴和呼噜的概率中计算出来。”
“……”
“淦!”
“猫:别算了,我不喜欢搞数学的!”
“猫:不是猜我喜欢谁,就是猜我死了还是活着,我特么还能不能有点隐私?”
“汤姆,你在我杰瑞面前谈隐私?那么多为科学献身的小白鼠们不答应!”
“第一个问题就把大家难住了??继续看,第二个问题更变态!”
“这好像是个随机森林问题,但是比目前的随机森林算法要深奥的多。
它一般用来做市场营销模拟的建模,或者是用来预测疾病的风险和病患者的易感性,我正好在做这方面的研究。”
“嗯!我们学校数学界还是有人才的嘛,这不终于有人能看懂题目了。”
“惭愧惭愧!这个问题我只能看懂一部分,另一部分,在我触摸不到的高度。”
“有多高?”
“喜马拉雅山那么高……”
“嘶~竟恐怖如斯?”
“前两个问题都这么难,那这第三个问题岂不是要突破天际?”
“求大老帮我读题。”
“铜球!”
“十万吨铜球!”
“百万吨铜球!”
排队球了半天,终于有一个人站了出来,还是那位‘雨花石’。
“我不太确定,这好像是人工神经网络ANN处理大型复杂的机器学习任务。
它描述的是一组带有权值的边和节点组成的相互连接的层,称为神经元。
通过对输入数据训练神经网络来学习输入和输出之间的关系,在输入层和输出层之间,可以插入多个隐藏层。
它的工作原理与大脑的结构类似,一组神经元被赋予一个随机权重,以确定神经元如何处理输入数据。
至于这个题目里我能看懂的……
当数据必须被非线性分离的时候,前馈神经网络决定如何选择